HKOI 2017/18 Final Event Briefing Session

LAU Chi Yung, Steven CHOW Kwan Ting Jeremy HO Ngan Hang, Anson

Content

- 1. Rules and Procedure
- 2. Identify common mistakes & sharing session
- 3. Practice Competition
- 4. Solution and demonstration

HKOI Timeline

Benefits of winning HKOI

- 1. Get a medal
 - ~180 contestants in total, ~90 contestants in each group
 - ~Top 50% of contestants in each group will get a medal
 - Gold : Silver : Bronze ≈ 1 : 2 : 3

HKOI Briefing Session

Benefits of winning HKOI

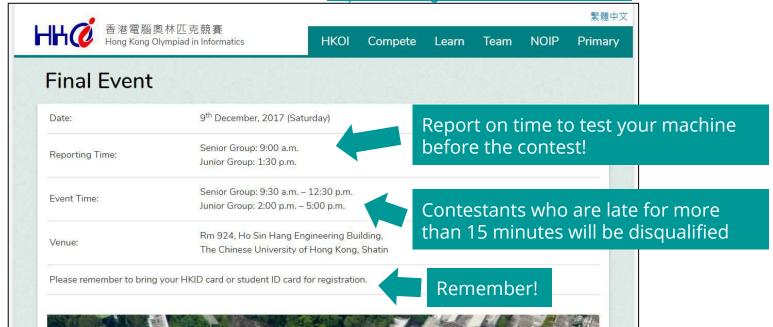
- 2. Enter the HKOI Training Team
 - Trainings on every Saturday from Feburary to May
 - Lectures, coding practices,
 mini-competitions, social events...
 - Meet friends!

Benefits of winning HKOI

3. Be eligible to join the Team Formation Test (TFT)

TFT selects potential students to participate in:

- International Olympiad in Informatics (IOI)
 - Hosts: **Japan (2018)**, Iran (2017), Russia (2016), Kazakhstan (2015)
- National Olympiad in Informatics (NOI)
 - Shaoxing 紹興 (2017), Mianyang 綿陽 (2016), Hangzhou 杭州 (2015)
- ACM-ICPC Hong Kong Chapter



HKOI 2017/18 Final Event

Contest Environment

http://hkoi.org/en/final-event-2017-18

HKOI Briefing Session

Final Event

Programming languages

- We cannot guarantee that the problems are solvable using Java and Python
- We cannot guarantee the proper functioning of the software provided for Java and Python
- Contestants may use such languages at their own risk

http://hkoi.org/en/rules-2017-18

Language	Development Software	
Pascal	Free Pascal 3.0.0	
C (C99)	Dev-C++ 5.11	
C++ (C++11)	(TDM-GCC 4.9.2)	
Java 8 *2nd-class	JDK 1.8.0	
Python 3.5 *2nd-class	Python 3.5.2	

Software

- Desktop Computer (Windows 7)

However, submitted programs will be compiled under the Linux operating system

Development Software

- Visual Studio Code (with Pascal, C/C++, Java and Python plugins)
- You can use any software provided (paint, calc IDE, compiler, web browser etc)
- C++ and Pascal documentations will be provided in the web browser
- NO Internet except HKOI Online Judge

F	Free Pascal 3.0.0
	Dev-C++ 5.11 TDM-GCC 4.9.2)
J	DK 1.8.0
F	Python 3.5.2

HKOI Briefing Session

Final Event

cylau - Lau Chi Yung Settings Help Logout Tasks

Software

- You can view the compiler flags on the HKOI Online Judge, even during contest
- You will develop your solutions on Windows 7
- Submitted programs will be compiled under the Linux operating system

https://judge.hkoi.org/help

Progran	mming language	e specif	ications	
Language	Compiler	Version	Compilation Flags	Execution Command
Pascal	/usr/bin/ppcx64-3.0.0	3.0.0	-O2 -Sg -v0 -dONLINE_JUDGE -XS program.pas -oprogram.exe	program.exe
С	/usr/bin/gcc-4.9	4.9.4-2	-static -std=c99 -Wno-unused-result -fno-optimize-sibling-calls -fno-strict- aliasing -fno-asm -DONLINE_JUDGE -s -O2 -o program.exe program.c -Im	program.exe
C++	/usr/bin/a (Ignore irr	relevant	t languages) n -s -o2 -o program.exe program.cxp	program.exe
C++11	/usr/bin/g++-4.9	4.9.4-2	-static -std=c++11 -Wno-unused-result -fno-optimize-sibling-calls -fno- strict-aliasing -DONLINE_JUDGE -lm -s -O2 -o program.exe program.cpp	program.exe
Haskell	/opt/ghc/8.0.2/bin/ghc 8.0.2 (Ignore irr	relevant	make 0 tmodir, o program.exe program.hs t languages)	program.exe
Java	/usr/local/bin/hkoijavac	1.8.0u151	/usr/lib/jvm/java-8-openjdk-amd64/bin program.java	/usr/lib/jvm/java-8-openjdk- amd64/bin/java -Xss1g -Xmx1g -ja program.jar
Python 3	/usr/bin/python3.5	3.5.2	-S -m py_compile program.py	/usr/bin/python3.5 -O -S program

- There might be differences in compiler behaviour between Windows and Linux in rare occasions
- We will not help resolve errors related to this during contest
- Please test it using your HKOI Online Judge account in this week to avoid using strange syntax

Hardware

- Roughwork sheet, keyboard, mouse and mousepad will be provided
- You can bring one personal keyboard for use in the competition
 - Wireless keyboards, keyboards that require installation of drivers, and mechanical keyboards fitted with "blue" switches (or equivalent) are not allowed
 - We reserve the right to examine and disallow any keyboard.
- Your own stationery (pen, pencil, rubber, ruler etc)
- NO calculators or other electronic devices
- NO personal roughwork sheet

HKOI 2017/18 Final Event

Question Paper

Question paper

- There are four tasks in total
- Each task worths 100 points
- Each task is divided into subtasks with different constraints and points

http://hkoi.org/en/past-problems

inal Even	t	
Year	Senior Group	Junior Group
2016/17	English Chinese	English Chinese
2015/16	English Chinese	English Chinese
2014/15	English Chinese	English Chinese
2014	English Chinese	English Chinese
2013	English Chinese	English Chinese
2012	Fnalish Chinese	English Chinese

	Points	Constraints
1	15	$L=1,N=1,G_i=1$
2	16	$L=1,W_i=1$
3	17	L=1
4	14	$W_i = L$ All guesses are reasonable
5	10	$W_i \leq L$
6	28	No additional constraints

HKOI 2016/17 Final Event Junior Task 1 "Acronym" https://judge.hkoi.org/task/J171

Scoring

- If your solution passes ALL testcases in a subtask, you get all points of that subtask (a.k.a. Batch Scoring)
- For example, a solution solving all cases with L = 1 would get 15 + 16 + 17 = 48 points

	Points	Constraints
1	15	$L=1$, $N=1$, $G_i=1$
2	16	$L=1,W_i=1$
3	17	L=1
4	14	$W_{f i}=L$ All guesses are reasonable
5	10	$W_i \leq L$
6	28	No additional constraints

HKOI 2016/17 Final Event Junior Task 1 "Acronym"

Scoring

- Scores of each subtasks are accumulated
- So, if you submit a solution that passes only subtask 1, you get 15 points; if you then submit another solution that passes only subask 2, your final score will be 15 + 16 = 31 points

	Points	Constraints
1	15	$L=1,N=1,G_i=1$
2	16	$L=1,W_i=1$
3	17	L=1
4	14	$W_{ m i} = L$ All guesses are reasonable
5	10	$W_i \leq L$
6	28	No additional constraints

HKOI 2016/17 Final Event Junior Task 1 "Acronym"

Scoring

- Some tasks could employ partial scoring
- One possible score:

SCORING

Within a subtask:

- If for each and every test case, your program outputs the correct minimal cost and a minimal-cost K-magical final configuration, you score 100% in the subtask.
- Otherwise if for each and every test case, your program outputs the correct minimal cost and any final configuration in the correct format, you score 60% in the subtask.
- · Otherwise, you lose all points in the subtask.

SUBTASKS

For all cases: $1 \le K < N \le 80$, $1 \le A, B \le 50$

Points Constraints

$$\begin{array}{ccc}
1 & 11 & N = 3 \\
K = 1 & \\
A = B = 1
\end{array}$$

$$\begin{array}{ccc}
2 & 15 & N=3 \\
& K=1
\end{array}$$

$$3$$
 10 $N \le 6$ $K = 1$

4 18
$$K=1$$

$$5$$
 25 $N \le 10$

Writing a solution

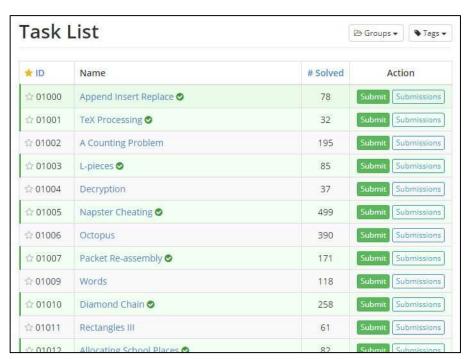
- Use standard input and standard output, not file I/O
- i.e. scanf, printf, cin, cout, read, readln, write, writeln
- avoid fopen, system("pause") etc
- For C/C++, main function should return 0
- Please make use of your HKOI Online Judge account to practice and test

We will demonstrate to you later

Submitting solution

- Same procedure as in HKOI Online Judge
- You will receive feedback about your submission: the type of error first encountered (if any) for each subtask
- You may submit at most once per task per 60 seconds, and at most 50 times per task

We will demonstrate to you later


HKOI 2017/18 Final Event

One week to go, what should I do now?

Practice!

- HKOI Online Judge http://judge.hkoi.org/
- Many tasks and virtual contests for practice
- Each finalist has been given a practice account
- Please make good use of it
- You may practice until 2017-12-09 00:00am (you are advised to sleep earlier!)

Final reminder

- Before leaving home, check your bag:
 - HKID or student ID
 - Pen, pencil, rubber, ruler
- Report on time

USEFUL TECHNIQUES ONE WEEK TO PRACTICE

USEFUL TECHNIQUES

- > Some simple algorithm / skills
 - > Linear search
 - Binary search
 - Depth-first-search (DFS) / Breadth-first-search (BFS)
 - ➤ O(N^2) sort / Counting Sort
 - > Partial Sum
- Simple mathematics
 - > Pythagoras's theorem
 - > Finding primes / factors

USEFUL TECHNIQUES

- Some simple data structures
 - Queue / Stack / Linked list
- Data handling
 - Main tested skill in Junior
 - ➤ Basic skill for Senior
 - E.g. Time, date, string, array processing

USEFUL TECHNIQUES

- Exhaustion / Brute Force
 - > Trying all possible cases
 - Good approach to some problems
 - > Can be done with iteration (for loop / while) or recursion
- > Time complexity evaluation
 - > Estimate whether your algorithm can run within time limit
 - > ~ 2 * 10^7 operations can be run in 1s
 - > Optimize your algorithm if your time complexity is too high

PREPARATION BEFORE CONTEST PRACTICE MAKE PERFECT

PREPARATION BEFORE CONTEST

- Get familiar with coding
- Solve past papers of HKOI / other problems on HKOJ
- Practice on other programming site
 - E.g. Codeforces, Hackerrank
- Revision on basic algorithm
 - E.g. Sorting, binary search
- Revision on usage of some function
 - Lower_bound, strcpy (C / C++)
 - Copy, Length (Pascal)

COMMON MISTAKES AVOID MAKING THOSE MISTAKES

COMMON MISTAKES

- > The spelling and cases of output
 - "yes", "Yes", "Impossible", "TURE"
- Use correct datatype
 - > E.g. don't use integer to store decimal number
 - Sometimes the value of output maybe large -> overflow
 - ➤ Choice between signed 32-bit integer and 64-bit integer
 - longint(PASCAL), int(C++/C) / int64(PASCAL), long long(C++/C)
 - %Ild instead of %d for (C++/C)

```
for (int j=0;i+j<N;j++){
   if (A[N-1-j] > B[i+j]){
        ans.push_back(A[N-1-j]-B[i+j]);
   } else if (A[N-1-j] == B[i+j]) continue;
   else if (A[N-1-j] < B[i+j]){
        cout << "Impossbie\n";
        return 0;
   }
}</pre>
```

COMMON MISTAKES

- Array size
 - ➤ Make sure you assign enough size for the array
 - Avoid negative index in C / C++
- > Initialization
- Avoid doing useless things
 - Naïve hard coding
 - > Small constant optimization
 - > Randomize
 - Over complicated algorithm

COMMON MISTAKES

- Corner case, Boundary case
- Wrong time management
 - ➤ Waste too much time on a single task
 - ➤ Waste too much time on aiming full solution
 - Ignore some simple subtasks

STRATEGIES WHAT SHOULD YOU DO

STRATEGIES – BEFORE CONTEST

- > Relax
- Check the equipment (mouse / keyboard) carefully
- Check the programming environment carefully
 - ➤ E.g. Compile successfully ? Path of executable ?
- > Try writing some simple program
 - E.g. Hello World, tasks in practice session

- Read all problems before you start coding
 - Problems are not sorted by difficulty
 - > Be patient to long problem statement
- Start with the problem you are most confident in
- Don't always aim for full solution
 - > Subtasks give you good amount of score
 - > Some easy subtasks only need few lines of code
 - > Sometime subtasks are hints, guide you to full solution

- Be careful with the constraints
 - Some special constraints are hints
 - ➤ E.g. Distinct integer, maximum value of integer <= 100
- Don't get panicked when your solution are not getting accepted
 - Correctness of your algorithm?
 - Corner / Boundary case?
 - ➤ Integer Overflow?
 - Size of Array is not large enough?
 - ➤ Divide by 0?

- When you receive TLE (Time limit Exceed)
- ➤ Infinite loop?
- Analysis what is the bottleneck of your solution
 - > Optimize your algorithm
 - E.g. Binary search instead of linear search
 - > Try different approach
- > Don't hesitate to give up on a problem
 - When you feel like you won't able to get more marks
 - When you spend too much time
 - ➤ Most candidates **CANNOT** solve ALL problems
 - Most candidates CANNOT completely solve ONE problem

- Try to observe some special property
 - > You need some observations to solve most of the tasks in HKOI
 - Wrong attempt does not deduct your scores
 - > You may write some programs base on your assumption and submit
 - > Test the correctness of your assumption
 - > Use the assumption to optimize your algorithm -> Full solution
- 2015/16 Senior "Military Training"
 - ➤ It is guaranteed that Robo's position at time K will not be (r0,c0).
 - \triangleright It is sufficient to find the answer by simulating the move of Robo's by K x K times instead of N x N times

- Use good approach to debug
 - Don't just sit there and think
 - Output the value of some variables and compare with your expected value
 - Check with samples and your own test cases
 - Use slow but accurate program to debug (Advance)
- Read the problem statement again to make sure you didn't miss any parts