
HKOI Briefing Session

HKOI 2017/18 Final Event
Briefing Session

LAU Chi Yung, Steven
CHOW Kwan Ting Jeremy

HO Ngan Hang, Anson

HKOI Briefing Session

1. Rules and Procedure

2. Identify common mistakes & sharing session

3. Practice Competition

4. Solution and demonstration

HKOI Briefing Session

We are here!

HKOI Briefing Session

1. Get a medal

- ~180 contestants in total, ~90 contestants in each group

- ~Top 50% of contestants in each group will get a medal

- Gold : Silver : Bronze ≈ 1 : 2 : 3

HKOI Briefing Session

2. Enter the HKOI Training Team

- Trainings on every Saturday from

Feburary to May

- Lectures, coding practices,

mini-competitions, social events...

- Meet friends!

HKOI BBQ 2016/17

HKOI Briefing Session

3. Be eligible to join the Team Formation Test (TFT)

TFT selects potential students to participate in:

- International Olympiad in Informatics (IOI)
- Hosts: Japan (2018), Iran (2017), Russia (2016), Kazakhstan (2015)

- National Olympiad in Informatics (NOI)
- Shaoxing 紹興 (2017), Mianyang 綿陽 (2016), Hangzhou 杭州 (2015)

- ACM-ICPC Hong Kong Chapter

HKOI Briefing Session

HKOI 2017/18 Final Event
Contest Environment

HKOI Briefing Session

Report on time to test your machine
before the contest!

Contestants who are late for more
than 15 minutes will be disqualified

http://hkoi.org/en/final-event-2017-18

Remember!
r

http://hkoi.org/en/final-event-2017-18

HKOI Briefing Session

Programming languages
- We Čannot ĳuarantee that the proċlems

are solǄaċle usinĳ Java and Python

- We Čannot ĳuarantee the proper
ĲunČtioninĳ oĲ the soĲtǅare proǄided Ĳor
Java and Python

- Contestants may use suČh lanĳuaĳes at
their oǅn risk

http://hkoi.org/en/rules-2017-18

http://hkoi.org/en/rules-2017-18

HKOI Briefing Session

Software
- Desktop Computer (Windows 7)

- Visual Studio Code
(with Pascal, C/C++, Java and Python plugins)

- You can use any software provided
(paint, calc, IDE, compiler, web browser etc)

- C++ and Pascal documentations will be provided in
the web browser

- NO Internet except HKOI Online Judge

However, submitted programs will be
compiled under the Linux operating
system

HKOI Briefing Session

Software
- You can view the compiler flags on the

HKOI Online Judge, even during contest

- You will develop your solutions on
Windows 7

- Submitted programs will be compiled
under the Linux operating system

- There might be differences in compiler behaviour between Windows and Linux in rare occasions

- We will not help resolve errors related to this during contest

- Please test it using your HKOI Online Judge account in this week to avoid using strange syntax

https://judge.hkoi.org/help

(Ignore irrelevant languages)

(Ignore irrelevant languages)

https://judge.hkoi.org/help

HKOI Briefing Session

Hardware
- Roughwork sheet, keyboard, mouse and mousepad will be provided

- You can bring one personal keyboard for use in the competition

- Wireless keyboards, keyboards that require installation of drivers, and mechanical
keyboards fitted with Ȋblueȋ switches (or equivalent) are not allowed

- We reserve the right to examine and disallow any keyboard.

- Your own stationery (pen, pencil, rubber, ruler etc)

- NO calculators or other electronic devices

- NO personal roughwork sheet

HKOI Briefing Session

HKOI 2017/18 Final Event
Question Paper

HKOI Briefing Session

Question paper

- There are four tasks in total

- Each task worths 100 points

- Each task is divided into subtasks with different
constraints and points

HKOI 2016/17 Final Event
Junior Task 1 "Acronym"

https://judge.hkoi.org/task/J171

http://hkoi.org/en/past-problems

https://judge.hkoi.org/task/J171
http://hkoi.org/en/past-problems

HKOI Briefing Session

Scoring

- If your solution passes ALL testcases in a
subtask, you get all points of that subtask
(a.k.a. Batch Scoring)

- For example, a solution solving all cases with
L = 1 would get 15 + 16 + 17 = 48 points

HKOI 2016/17 Final Event
Junior Task 1 "Acronym"

HKOI Briefing Session

Scoring

- Scores of each subtasks are accumulated

- So, if you submit a solution that passes only
subtask 1, you get 15 points; if you then submit
another solution that passes only subask 2, your
final score will be 15 + 16 = 31 points

HKOI 2016/17 Final Event
Junior Task 1 "Acronym"

HKOI Briefing Session

Scoring

- Some tasks could employ partial scoring

- One possible score:
60% * 11 + 100% * 15 = 21.6 points

HKOI 2016/17 Final Event
Senior Task 1 "Magic Triangle II"

HKOI Briefing Session

Writing a solution

- Use standard input and standard output, not file I/O

- i.e. scanf, printf, cin, cout, read, readln, write, writeln

- avoid fopen, system("pause") etc

- For C/C++, main function should return 0

- Please make use of your HKOI Online Judge account to practice and test
We will demonstrate to you later

HKOI Briefing Session

Submitting solution

- Same procedure as in HKOI Online Judge

- You will receive feedback about your submission:
the type of error first encountered (if any) for each subtask

- You may submit at most once per task per 60 seconds, and at most 50 times per task

We will demonstrate to you later

HKOI Briefing Session

HKOI 2017/18 Final Event
One week to go, what should I do now?

HKOI Briefing Session

Practice!

- HKOI Online Judge http://judge.hkoi.org/

- Many tasks and virtual contests for practice

- Each finalist has been given a practice account

- Please make good use of it

- You may practice until 2017-12-09 00:00am
(you are advised to sleep earlier!)

http://judge.hkoi.org/

HKOI Briefing Session

- Before leaving home, check your bag:

- HKID or student ID
- Pen, pencil, rubber, ruler

- Report on time

BRIEFING FOR HKOI
2017/18 FINALIST

2017-12-02

USEFUL TECHNIQUES
ONE WEEK TO PRACTICE

USEFUL TECHNIQUES

➢ Some simple algorithm / skills

➢ Linear search

➢ Binary search

➢ Depth-first-search (DFS) / Breadth-first-search (BFS)

➢ O(N^2) sort / Counting Sort

➢ Partial Sum

➢ Simple mathematics

➢ Pythagoras’s theorem

➢ Finding primes / factors

USEFUL TECHNIQUES

➢ Some simple data structures

➢ Queue / Stack / Linked list

➢ Data handling

➢ Main tested skill in Junior

➢ Basic skill for Senior

➢ E.g. Time, date, string, array processing

USEFUL TECHNIQUES

➢ Exhaustion / Brute Force

➢ Trying all possible cases

➢ Good approach to some problems

➢ Can be done with iteration (for loop / while) or recursion

➢ Time complexity evaluation

➢ Estimate whether your algorithm can run within time limit

➢ ~ 2 * 10^7 operations can be run in 1s

➢ Optimize your algorithm if your time complexity is too high

PREPARATION BEFORE CONTEST
PRACTICE MAKE PERFECT

PREPARATION BEFORE CONTEST

➢ Get familiar with coding

➢ Solve past papers of HKOI / other problems on HKOJ

➢ Practice on other programming site

➢ E.g. Codeforces, Hackerrank

➢ Revision on basic algorithm

➢ E.g. Sorting, binary search

➢ Revision on usage of some function

➢ Lower_bound, strcpy (C / C++)

➢ Copy, Length (Pascal)

COMMON MISTAKES
AVOID MAKING THOSE MISTAKES

COMMON MISTAKES

➢ The spelling and cases of output

➢ “yes”, “Yes”, “Impossibie”, “TURE”

➢ Use correct datatype

➢ E.g. don’t use integer to store decimal number

➢ Sometimes the value of output maybe large -> overflow

➢ Choice between signed 32-bit integer and 64-bit integer

➢ longint(PASCAL), int(C++/C) / int64(PASCAL), long long(C++/C)

➢ %lld instead of %d for (C++/C)

COMMON MISTAKES

➢ Array size

➢ Make sure you assign enough size for the array

➢ Avoid negative index in C / C++

➢ Initialization

➢ Avoid doing useless things

➢ Naïve hard coding

➢ Small constant optimization

➢ Randomize

➢ Over complicated algorithm

COMMON MISTAKES

➢ Corner case, Boundary case

➢ Wrong time management

➢ Waste too much time on a single task

➢ Waste too much time on aiming full solution

➢ Ignore some simple subtasks

STRATEGIES
WHAT SHOULD YOU DO

STRATEGIES – BEFORE CONTEST

➢ Relax

➢ Check the equipment (mouse / keyboard) carefully

➢ Check the programming environment carefully

➢ E.g. Compile successfully ? Path of executable ?

➢ Try writing some simple program

➢ E.g. Hello World, tasks in practice session

STRATEGIES – DURING CONTEST

➢ Read all problems before you start coding

➢ Problems are not sorted by difficulty

➢ Be patient to long problem statement

➢ Start with the problem you are most confident in

➢ Don’t always aim for full solution

➢ Subtasks give you good amount of score

➢ Some easy subtasks only need few lines of code

➢ Sometime subtasks are hints, guide you to full solution

STRATEGIES – DURING CONTEST

➢ Be careful with the constraints

➢ Some special constraints are hints

➢ E.g. Distinct integer, maximum value of integer <= 100

➢ Don’t get panicked when your solution are not getting accepted

➢ Correctness of your algorithm?

➢ Corner / Boundary case?

➢ Integer Overflow?

➢ Size of Array is not large enough?

➢ Divide by 0?

STRATEGIES – DURING CONTEST

➢ When you receive TLE (Time limit Exceed)

➢ Infinite loop?

➢ Analysis what is the bottleneck of your solution

➢ Optimize your algorithm

➢ E.g. Binary search instead of linear search

➢ Try different approach

➢ Don’t hesitate to give up on a problem

➢ When you feel like you won’t able to get more marks

➢ When you spend too much time

➢ Most candidates CANNOT solve ALL problems

➢ Most candidates CANNOT completely solve ONE problem

STRATEGIES – DURING CONTEST

➢ Try to observe some special property

➢ You need some observations to solve most of the tasks in HKOI

➢ Wrong attempt does not deduct your scores

➢ You may write some programs base on your assumption and submit

➢ Test the correctness of your assumption

➢ Use the assumption to optimize your algorithm -> Full solution

➢ 2015/16 Senior “Military Training”

➢ It is guaranteed that Robo's position at time K will not be (r0,c0).

➢ It is sufficient to find the answer by simulating the move of Robo’s by K x K times instead of N x N times

STRATEGIES – DURING CONTEST

➢ Use good approach to debug

➢ Don’t just sit there and think

➢ Output the value of some variables and compare with your expected value

➢ Check with samples and your own test cases

➢ Use slow but accurate program to debug (Advance)

➢ Read the problem statement again to make sure you didn’t miss any parts

